Ideal equal Baire classes

Adam Kwela

University of Gdańsk

Winter School 2017

Based on the article: Adam Kwela, Marcin Staniszewski, Ideal equal Baire classes, J. Math. Anal. App., DOI: 10.1016/j.jmaa.2016.11.062.

Three notions of ideal convergence

Let \mathcal{I}, \mathcal{J} be ideals on ω and let X be a set. Suppose that $\left(x_{n}\right) \subseteq \mathbb{R}, x \in \mathbb{R},\left(f_{n}\right) \subseteq \mathbb{R}^{X}$ and $f \in \mathbb{R}^{X}$.

- $x_{n} \xrightarrow{\text { I }} x$ if $\left\{n:\left|x_{n}-x\right| \geq \varepsilon\right\} \in \mathcal{I}$ for all $\varepsilon>0$.
- $f_{n} \xrightarrow{I} f\left(\mathcal{I}\right.$-pointwise convergence) if $f_{n}(x) \xrightarrow{I^{\prime}} f(x)$ for all $x \in X$;
- $f_{n} \xrightarrow{I-d} f(\mathcal{I}$-discrete convergence $)$ if $\left\{n: f_{n}(x) \neq f(x)\right\} \in I$ for all $x \in X$;
- $f_{n} \xrightarrow{(\mathcal{I}, \mathcal{J})-e} f((\mathcal{I}, \mathcal{J})$-equal convergence $)$ if there exists a sequence of positive reals $\left(\varepsilon_{n}\right) \xrightarrow{\mathcal{J}} 0$ such that $\left\{n:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in I$ for all $x \in X$.

Let \mathcal{I}, \mathcal{J} be ideals on ω and let X be a set. Suppose that $\left(x_{n}\right) \subseteq \mathbb{R}, x \in \mathbb{R},\left(f_{n}\right) \subseteq \mathbb{R}^{X}$ and $f \in \mathbb{R}^{X}$.

- $x_{n} \xrightarrow{\mathcal{I}} x$ if $\left\{n:\left|x_{n}-x\right| \geq \varepsilon\right\} \in \mathcal{I}$ for all $\varepsilon>0$.
- $f_{n} \xrightarrow{\mathcal{I}} f(\mathcal{I}$-pointwise convergence $)$ if $f_{n}(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- $f_{n} \xrightarrow{I-d} f\left(\mathcal{I}\right.$-discrete convergence) if $\left\{n: f_{n}(x) \neq f(x)\right\} \in \mathcal{I}$ for all $x \in X$;
- $f_{n} \xrightarrow{(\mathcal{I}, \mathcal{J})-e} f((\mathcal{I}, \mathcal{J})$-equal convergence $)$ if there exists a sequence of positive reals $\left(\varepsilon_{n}\right) \xrightarrow{\mathcal{J}} 0$ such that $\left\{n:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in \mathcal{I}$ for all $x \in X$.

Let \mathcal{I}, \mathcal{J} be ideals on ω and let X be a set. Suppose that $\left(x_{n}\right) \subseteq \mathbb{R}, x \in \mathbb{R},\left(f_{n}\right) \subseteq \mathbb{R}^{X}$ and $f \in \mathbb{R}^{X}$.

- $x_{n} \xrightarrow{\mathcal{I}} x$ if $\left\{n:\left|x_{n}-x\right| \geq \varepsilon\right\} \in \mathcal{I}$ for all $\varepsilon>0$.
- $f_{n} \xrightarrow{\mathcal{I}} f(\mathcal{I}$-pointwise convergence $)$ if $f_{n}(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- $f_{n} \xrightarrow{\mathcal{I}-d} f(\mathcal{I}$-discrete convergence $)$ if $\left\{n: f_{n}(x) \neq f(x)\right\} \in \mathcal{I}$ for all $x \in X$;
- $f_{n} \xrightarrow{(\mathcal{I}, \mathcal{J})-e} f((\mathcal{I}, \mathcal{J})$-equal convergence $)$ if there exists a sequence of positive reals $\left(\varepsilon_{n}\right) \xrightarrow{\mathcal{J}} 0$ such that $\left\{n:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in \mathcal{I}$ for all $x \in X$.

Three notions of ideal convergence

Let \mathcal{I}, \mathcal{J} be ideals on ω and let X be a set. Suppose that $\left(x_{n}\right) \subseteq \mathbb{R}, x \in \mathbb{R},\left(f_{n}\right) \subseteq \mathbb{R}^{X}$ and $f \in \mathbb{R}^{X}$.

- $x_{n} \xrightarrow{\mathcal{I}} x$ if $\left\{n:\left|x_{n}-x\right| \geq \varepsilon\right\} \in \mathcal{I}$ for all $\varepsilon>0$.
- $f_{n} \xrightarrow{\mathcal{I}} f\left(\mathcal{I}\right.$-pointwise convergence) if $f_{n}(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- $f_{n} \xrightarrow{\mathcal{I}-d} f(\mathcal{I}$-discrete convergence $)$ if $\left\{n: f_{n}(x) \neq f(x)\right\} \in \mathcal{I}$ for all $x \in X$;
- $f_{n} \xrightarrow{(\mathcal{I}, \mathcal{J})-e} f((\mathcal{I}, \mathcal{J})$-equal convergence $)$ if there exists a sequence of positive reals $\left(\varepsilon_{n}\right) \xrightarrow{\mathcal{J}} 0$ such that $\left\{n:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in \mathcal{I}$ for all $x \in X$.

Quasi-continuous functions

A function $f: X \rightarrow \mathbb{R}$ is quasi-continuous in $x_{0} \in X$ if for every $\varepsilon>0$ and every open neighborhood U of x_{0} there exists an open nonempty $V \subseteq U$ such that for all $x \in V$ we have $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon . f$ is quasi-continuous $(f \in Q C(X))$ if it is quasi-continuous in all $x \in X$.

Plan of the talk

	\mathcal{I}-pointwise convergence	\mathcal{I}-discrete convergence	$(\mathcal{I}, \mathcal{J})$-equal convergence
$C(X)$ X - perfectly normal space	\checkmark	\checkmark	$?$
$Q C(X)$ $X-$ metric Baire space	\checkmark	\checkmark	$?$

Plan of the talk

	\mathcal{I}-pointwise convergence	\mathcal{I}-discrete convergence	$(\mathcal{I}, \mathcal{J})$-equal convergence
$C(X)$ $X-$ perfectly normal space	\checkmark	\checkmark	$?$
$Q C(X)$ $X-$ metric Baire space	\checkmark	\checkmark	$?$

$\mathrm{QC}(\mathrm{X})+\mathcal{I}$-pointwise convergence

Theorem (Z. Grande)

(1) $B_{1}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

Let \mathcal{I} be a Borel ideal.
(1) $\mathcal{W R} \nsubseteq \mathcal{I}$ if and only if $B_{1}^{I}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $\mathcal{W R} \sqsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all metric Baire spaces X.

- $B_{\alpha}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

$\mathrm{QC}(\mathrm{X})+\mathcal{I}$-pointwise convergence

Theorem (Z. Grande)

(1) $B_{1}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)
Let \mathcal{I} be a Borel ideal.
(1) $\mathcal{W R} \nsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $\mathcal{W R} \sqsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all metric Baire spaces X.

- $B_{\alpha}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

$\mathrm{QC}(\mathrm{X})+\mathcal{I}$-pointwise convergence

Theorem (Z. Grande)

(1) $B_{1}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)
Let \mathcal{I} be a Borel ideal.
(1) $\mathcal{W R} \nsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(3) $\mathcal{W R} \sqsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all metric Baire spaces X.

- $B_{\alpha}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

$\mathrm{QC}(\mathrm{X})+\mathcal{I}$-pointwise convergence

Theorem (Z. Grande)

(1) $B_{1}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

Let \mathcal{I} be a Borel ideal.
(1) $\mathcal{W R} \nsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $\mathcal{W R} \sqsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all metric Baire spaces X.

- $B_{\alpha}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

$\mathrm{QC}(\mathrm{X})+\mathcal{I}$-pointwise convergence

Theorem (Z. Grande)

(1) $B_{1}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

Let \mathcal{I} be a Borel ideal.
(1) $\mathcal{W R} \nsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=P W D(X)$ for all metric Baire spaces X.
(2) $\mathcal{W R} \sqsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all metric Baire spaces X.
(3) $B_{\alpha}^{\mathcal{I}}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

$\mathrm{QC}(\mathrm{X})+\mathcal{I}$-discrete convergence

Theorem (Z. Grande)

(1) $B_{1}^{d}(Q C(X))=P W D_{0}(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}^{d}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

Let \mathcal{I} be a Borel ideal.
(1) $\mathcal{W R} \nsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}-d}(Q C(X))=P W D_{0}(X)$ for all metric Baire spaces X.
(2) $\mathcal{W R} \sqsubseteq \mathcal{I}$ if and only if $B_{1}^{\mathcal{I}-d}(Q C(X))=$ Baire (X) for all metric Baire spaces X.
(3) $B_{\alpha}^{\mathcal{I}-d}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.
\mathcal{J} contains an isomorphic copy of $\mathcal{I}(\mathcal{I} \sqsubseteq \mathcal{J})$ if there is a bijection $f: \bigcup \mathcal{I} \rightarrow \bigcup \mathcal{J}$ such that $f[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$.
$\mathcal{W R}$ is an ideal on $\omega \times \omega$ generated by two kinds of generators:
(1) vertical lines, i.e., sets of the form $\{n\} \times \omega$ for $n \in \omega$;
(3) sets $G \subseteq \omega \times \omega$ such that for every $(i, j),(k, I) \in G$ either $i>k+l$ or $k>i+j$.
\mathcal{J} contains an isomorphic copy of $\mathcal{I}(\mathcal{I} \sqsubseteq \mathcal{J})$ if there is a bijection $f: \bigcup \mathcal{I} \rightarrow \bigcup \mathcal{J}$ such that $f[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$.
$\mathcal{W R}$ is an ideal on $\omega \times \omega$ generated by two kinds of generators:
(1) vertical lines, i.e., sets of the form $\{n\} \times \omega$ for $n \in \omega$;
(2) sets $G \subseteq \omega \times \omega$ such that for every $(i, j),(k, l) \in G$ either $i>k+l$ or $k>i+j$.

$\mathrm{QC}(\mathrm{X})+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (folklore)

(1) $B_{1}^{e}(Q C(X))=P W D_{0}(X)$ for all metric Baire spaces X.
(2) $B_{\alpha}^{e}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire spaces X.

$\mathrm{QC}(\mathrm{X})+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)
Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if
$B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D_{0}(X)$ for all metric Baire X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_{1}^{(I, \mathcal{J})-e}(Q C(X))=P W D(X)$ for all metric Baire X.

- $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all metric Baire X.
- $B_{\alpha}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire X.

$\mathrm{QC}(\mathrm{X})+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D_{0}(X)$ for all metric Baire X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D(X)$ for all metric Baire X.

- $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all metric Baire X.
- $B_{\alpha}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire X.

$\mathrm{QC}(\mathrm{X})+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D_{0}(X)$ for all metric Baire X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D(X)$ for all metric Baire X.
(0) $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all metric Baire X.

- $B_{\alpha}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire X.

$\mathrm{QC}(\mathrm{X})+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D_{0}(X)$ for all metric Baire X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D(X)$ for all metric Baire X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all metric Baire X.

- $B_{\alpha}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire X.

$\mathrm{QC}(\mathrm{X})+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D_{0}(X)$ for all metric Baire X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=P W D(X)$ for all metric Baire X.
(0) $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all metric Baire X.

- $B_{\alpha}^{(\mathcal{I}, \mathcal{J})-e}(Q C(X))=$ Baire (X) for all $\alpha>1$ and all metric Baire X.

q-types

Let $A \in \mathcal{P}(\omega)$ and $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A=\{M \cup N: M \in \mathcal{I} \wedge N \subseteq A\}$;
- $\mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}=\left\{M \cup N: M \in \mathcal{I} \wedge \exists_{n \in \omega} N \subseteq \bigcup_{i<n} A_{i}\right\}$.

Definition

(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for any sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$.
(3) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for some sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.
($(\mathcal{I}, \mathcal{J})$ is of the third q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

Example

(1) (Fin, Fin $\otimes \emptyset)$ is of the first q-type.
(2) $(\emptyset \otimes$ Fin, Fin $\otimes \emptyset)$ is of the second q-type.
(3) $(\mathcal{W R}$, Fin $\otimes \emptyset)$ is of the third q-type.

q-types

Let $A \in \mathcal{P}(\omega)$ and $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A=\{M \cup N: M \in \mathcal{I} \wedge N \subseteq A\}$;
- $\mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}=\left\{M \cup N: M \in \mathcal{I} \wedge \exists_{n \in \omega} N \subseteq \bigcup_{i<n} A_{i}\right\}$.

Definition

(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for any sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$.
(3) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for some sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.
(0) $(\mathcal{I}, \mathcal{J})$ is of the third q-type if $\mathcal{W} \mathcal{R} \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

Example

(1) (Fin, Fin $\otimes \emptyset)$ is of the first q-type.
(2) $(\emptyset \otimes$ Fin, $F i n \otimes \emptyset)$ is of the second q-type.
(3) $(\mathcal{W R}, \operatorname{Fin} \otimes \emptyset)$ is of the third q-type.

q-types

Let $A \in \mathcal{P}(\omega)$ and $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A=\{M \cup N: M \in \mathcal{I} \wedge N \subseteq A\}$;
- $\mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}=\left\{M \cup N: M \in \mathcal{I} \wedge \exists_{n \in \omega} N \subseteq \bigcup_{i<n} A_{i}\right\}$.

Definition

(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for any sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for some sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.
($(\mathcal{I}, \mathcal{J})$ is of the third q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

Example

(1) (Fin, Fin $\otimes \emptyset)$ is of the first q-type.
(2) $(\emptyset \otimes$ Fin, $F i n \otimes \emptyset)$ is of the second q-type.
(3) $(\mathcal{W R}, \operatorname{Fin} \otimes \emptyset)$ is of the third q-type.

q-types

Let $A \in \mathcal{P}(\omega)$ and $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A=\{M \cup N: M \in \mathcal{I} \wedge N \subseteq A\}$;
- $\mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}=\left\{M \cup N: M \in \mathcal{I} \wedge \exists_{n \in \omega} N \subseteq \bigcup_{i<n} A_{i}\right\}$.

Definition

(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for any sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for some sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

Example

(1) (Fin, Fin $\otimes \emptyset)$ is of the first q-type.
(2) $(\emptyset \otimes$ Fin, $\operatorname{Fin} \otimes \emptyset)$ is of the second q-type.
(3) $(\mathcal{W R}, \operatorname{Fin} \otimes \emptyset)$ is of the third q-type.

q-types

Let $A \in \mathcal{P}(\omega)$ and $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A=\{M \cup N: M \in \mathcal{I} \wedge N \subseteq A\}$;
- $\mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}=\left\{M \cup N: M \in \mathcal{I} \wedge \exists_{n \in \omega} N \subseteq \bigcup_{i<n} A_{i}\right\}$.

Definition

(1) $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for any sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for some sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{W} \mathcal{R} \nsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third q-type if $\mathcal{W R} \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

Example

(1) (Fin, Fin $\otimes \emptyset$) is of the first q-type.
(2) $(\emptyset \otimes$ Fin, $\operatorname{Fin} \otimes \emptyset)$ is of the second q-type.
(3) $(\mathcal{W R}, \operatorname{Fin} \otimes \emptyset)$ is of the third q-type.

Method of Laczkovich and Recław

Consider the following game $G_{1}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a $k_{n} \notin C_{n}$. Player I wins, if $\bigcup_{n \in \omega}\left\{k_{n}\right\} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: $G_{1}(\mathcal{I})$ is determined.
(2) K.: Player I has a winning strategy if and only if $\mathcal{W R} \sqsubseteq I$

- Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-+-diagonalizable: there is a sequence $\left(D_{n}\right)_{n \in \omega}$ such that for each $A \in \mathcal{I}$ there is n with $A \cap D_{n}=\emptyset$.

Method of Laczkovich and Recław

Consider the following game $G_{1}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a $k_{n} \notin C_{n}$. Player I wins, if $\bigcup_{n \in \omega}\left\{k_{n}\right\} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: $G_{1}(\mathcal{I})$ is determined.
(2) K.: Player I has a winning strategy if and only if $\mathcal{W R} \sqsubseteq \mathcal{I}$
(3) Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-+-diagonalizable: there is a sequence $\left(D_{n}\right)_{n \in \omega}$ such that for each $A \in \mathcal{I}$ there is n with $A \cap D_{n}=\emptyset$.

Method of Laczkovich and Recław

Consider the following game $G_{1}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a $k_{n} \notin C_{n}$. Player I wins, if $\bigcup_{n \in \omega}\left\{k_{n}\right\} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: $G_{1}(\mathcal{I})$ is determined.
(2) K.: Player I has a winning strategy if and only if $\mathcal{W} \mathcal{R} \sqsubseteq \mathcal{I}$
(Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-+-diagonalizable: there is a sequence $\left(D_{n}\right)_{n \in \omega}$ such that for each $A \in \mathcal{I}$ there is n with $A \cap D_{n}=\emptyset$.

Method of Laczkovich and Recław

Consider the following game $G_{1}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a $k_{n} \notin C_{n}$. Player I wins, if $\bigcup_{n \in \omega}\left\{k_{n}\right\} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: $G_{1}(\mathcal{I})$ is determined.
(2) K.: Player I has a winning strategy if and only if $\mathcal{W} \mathcal{R} \sqsubseteq \mathcal{I}$
(3) Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-+-diagonalizable: there is a sequence $\left(D_{n}\right)_{n \in \omega}$ such that for each $A \in \mathcal{I}$ there is n with $A \cap D_{n}=\emptyset$.

c-types

Definition

(1) $(\mathcal{I}, \mathcal{J})$ is of the first c-type if Fin \otimes Fin $\nsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for any sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second c-type if Fin $\otimes \operatorname{Fin} \sqsubseteq \mathcal{I} \sqcup\left(A_{n}\right)_{n \in \omega}$ for some sequence $\left(A_{n}\right)_{n \in \omega} \subseteq \mathcal{J}$, but Fin \otimes Fin $¥ \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third c-type if Fin \otimes Fin $\sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

Method of Laczkovich and Recław

Consider the following game $G_{2}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a finite set F_{n} disjoint with C_{n}. Player I wins, if $\bigcup_{n \in \omega} F_{n} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: the game is determined.
(2) Laflamme: Player I has a winning strategy if and only if Fin \otimes Fin $\sqsubseteq \mathcal{I}$
(3) Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-diagonalizable by \mathcal{I}-universal sets (which is a "nice" combinatorial property).

Method of Laczkovich and Recław

Consider the following game $G_{2}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a finite set F_{n} disjoint with C_{n}. Player I wins, if $\bigcup_{n \in \omega} F_{n} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: the game is determined.
(2) Laflamme: Player I has a winning strategy if and only if Fin \otimes Fin $\sqsubseteq \mathcal{I}$
© Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-diagonalizable by \mathcal{I}-universal sets (which is a "nice" combinatorial property).

Method of Laczkovich and Recław

Consider the following game $G_{2}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a finite set F_{n} disjoint with C_{n}. Player I wins, if $\bigcup_{n \in \omega} F_{n} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: the game is determined.
(2) Laflamme: Player I has a winning strategy if and only if Fin \otimes Fin $\sqsubseteq \mathcal{I}$
(3) Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-diagonalizable by \mathcal{I}-universal sets (which is a "nice" combinatorial property).

Method of Laczkovich and Recław

Consider the following game $G_{2}(\mathcal{I})$ invented by Laflamme: Player I in his n-th turn picks $C_{n} \in \mathcal{I}$ and Player II responds with a finite set F_{n} disjoint with C_{n}. Player I wins, if $\bigcup_{n \in \omega} F_{n} \in \mathcal{I}$. Otherwise Player II wins.
(1) Martin's Theorem on Borel determinacy: the game is determined.
(2) Laflamme: Player I has a winning strategy if and only if Fin \otimes Fin $\sqsubseteq \mathcal{I}$
(3) Laflamme: Player II has a winning strategy if and only if \mathcal{I} is ω-diagonalizable by \mathcal{I}-universal sets (which is a "nice" combinatorial property).

$C(X)+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the second c-type if and only if
$B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}(X)$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.

In parts (2) and (3) of the above Theorem the implications from left to right can be generalized to all $1 \leq \alpha<\omega_{1}$.

$C(X)+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the second c-type if and only if
$B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}(X)$ for all $1 \leq n<\omega$ and all perfectly
normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if
$B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.

In parts (2) and (3) of the above Theorem the implications from left to right can be generalized to all $1 \leq \alpha<\omega_{1}$.

$C(X)+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}(X)$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.

In parts (2) and (3) of the above Theorem the implications from left to right can be generalized to all $1 \leq \alpha<\omega_{1}$.

$C(X)+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}(X)$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.

In parts (2) and (3) of the above Theorem the implications from left to right can be generalized to all $1 \leq \alpha<\omega_{1}$.

$C(X)+(\mathcal{I}, \mathcal{J})$-equal convergence

Theorem (A.K. and M. Staniszewski)

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω. Suppose that \mathcal{I} is Borel.
(1) $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(2) $(\mathcal{I}, \mathcal{J})$ is of the second c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X))=B_{n}(X)$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.
(3) $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if $B_{n}^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^{e}(C(X))$ for all $1 \leq n<\omega$ and all perfectly normal spaces X.

In parts (2) and (3) of the above Theorem the implications from left to right can be generalized to all $1 \leq \alpha<\omega_{1}$.

Problems

Problem

Generalize the previous Theorem to all $1 \leq \alpha<\omega_{1}$.

Problem

Characterize $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(C(X))$ for $(\mathcal{I}, \mathcal{J})$ of the third c-type.

Problems

Problem

Generalize the previous Theorem to all $1 \leq \alpha<\omega_{1}$.

Problem

Characterize $B_{1}^{(\mathcal{I}, \mathcal{J})-e}(C(X))$ for $(\mathcal{I}, \mathcal{J})$ of the third c-type.

Thank you for your attention!

