Ideal equal Baire classes

Adam Kwela

University of Gdańsk

Winter School 2017

Based on the article: Adam Kwela, Marcin Staniszewski, *Ideal equal Baire classes*, J. Math. Anal. App., DOI: 10.1016/j.jmaa.2016.11.062.

•
$$x_n \xrightarrow{\mathcal{I}} x$$
 if $\{n : |x_n - x| \ge \varepsilon\} \in \mathcal{I}$ for all $\varepsilon > 0$.

- $f_n \xrightarrow{\mathcal{I}} f$ (*I*-pointwise convergence) if $f_n(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- $f_n \xrightarrow{\mathcal{I}-d} f$ (\mathcal{I} -discrete convergence) if $\{n : f_n(x) \neq f(x)\} \in \mathcal{I}$ for all $x \in X$;
- f_n (*I*, *J*)-e f ((*I*, *J*)-equal convergence) if there exists a sequence of positive reals (ε_n) → 0 such that {n : |f_n(x) f(x)| ≥ ε_n} ∈ *I* for all x ∈ X.

•
$$x_n \xrightarrow{\mathcal{I}} x$$
 if $\{n : |x_n - x| \ge \varepsilon\} \in \mathcal{I}$ for all $\varepsilon > 0$.

- $f_n \xrightarrow{\mathcal{I}} f$ (*I*-pointwise convergence) if $f_n(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- f_n ^{⊥-d}→ f (⊥-discrete convergence) if {n : f_n(x) ≠ f(x)} ∈ ⊥ for all x ∈ X;
- f_n (*I*, *J*)-e f ((*I*, *J*)-equal convergence) if there exists a sequence of positive reals (ε_n) → 0 such that {n : |f_n(x) f(x)| ≥ ε_n} ∈ *I* for all x ∈ X.

コン・ イヨン・

•
$$x_n \xrightarrow{\mathcal{I}} x$$
 if $\{n : |x_n - x| \ge \varepsilon\} \in \mathcal{I}$ for all $\varepsilon > 0$.

- $f_n \xrightarrow{\mathcal{I}} f$ (*I*-pointwise convergence) if $f_n(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- $f_n \xrightarrow{\mathcal{I}-d} f$ (\mathcal{I} -discrete convergence) if $\{n : f_n(x) \neq f(x)\} \in \mathcal{I}$ for all $x \in X$;
- f_n (*I*, *J*)-e f ((*I*, *J*)-equal convergence) if there exists a sequence of positive reals (ε_n) → 0 such that {n : |f_n(x) f(x)| ≥ ε_n} ∈ *I* for all x ∈ X.

•
$$x_n \xrightarrow{\mathcal{I}} x$$
 if $\{n : |x_n - x| \ge \varepsilon\} \in \mathcal{I}$ for all $\varepsilon > 0$.

- $f_n \xrightarrow{\mathcal{I}} f$ (*I*-pointwise convergence) if $f_n(x) \xrightarrow{\mathcal{I}} f(x)$ for all $x \in X$;
- $f_n \xrightarrow{\mathcal{I}-d} f$ (\mathcal{I} -discrete convergence) if $\{n : f_n(x) \neq f(x)\} \in \mathcal{I}$ for all $x \in X$;
- f_n (*I*,*J*)-e f ((*I*, *J*)-equal convergence) if there exists a sequence of positive reals (ε_n) → 0 such that {n : |f_n(x) f(x)| ≥ ε_n} ∈ *I* for all x ∈ X.

A function $f: X \to \mathbb{R}$ is *quasi-continuous in* $x_0 \in X$ if for every $\varepsilon > 0$ and every open neighborhood U of x_0 there exists an open nonempty $V \subseteq U$ such that for all $x \in V$ we have $|f(x) - f(x_0)| < \varepsilon$. f is *quasi-continuous* $(f \in QC(X))$ if it is quasi-continuous in all $x \in X$.

	$\mathcal I$ -pointwise	\mathcal{I} -discrete	$(\mathcal{I},\mathcal{J}) ext{-equal}$
	convergence	convergence	convergence
C(X)			
X – perfectly	↓ √	✓	?
normal space			
QC(X)			
X – metric	✓	✓	?
Baire space			

	$\mathcal{I} ext{-pointwise}$	$\mathcal{I} extsf{-discrete}$	$(\mathcal{I},\mathcal{J}) ext{-equal}$
	convergence	convergence	convergence
C(X)			
X – perfectly	✓	✓	?
normal space			
QC(X)			
X – metric	✓	✓	?
Baire space			

- **Q** $B_1(QC(X)) = PWD(X)$ for all metric Baire spaces X.
- Output: Baire (X) for all α > 1 and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

- WR ⊈ I if and only if B^I₁ (QC (X)) = PWD (X) for all metric Baire spaces X.
- ◎ $WR \sqsubseteq I$ if and only if $B_1^I(QC(X)) = Baire(X)$ for all metric Baire spaces X.
- B^I_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

- **Q** $B_1(QC(X)) = PWD(X)$ for all metric Baire spaces X.
- Output B_α (QC (X)) = Baire (X) for all α > 1 and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

- WR ⊈ I if and only if B^I₁ (QC (X)) = PWD (X) for all metric Baire spaces X.
- ② $WR \sqsubseteq I$ if and only if $B_1^I(QC(X)) = Baire(X)$ for all metric Baire spaces X.
- B^I_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

- **Q** $B_1(QC(X)) = PWD(X)$ for all metric Baire spaces X.
- Output B_α (QC (X)) = Baire (X) for all α > 1 and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

- WR ⊈ I if and only if B^I₁ (QC (X)) = PWD (X) for all metric Baire spaces X.
- ② $WR \sqsubseteq I$ if and only if $B_1^I(QC(X)) = Baire(X)$ for all metric Baire spaces X.
- B^I_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

- **Q** $B_1(QC(X)) = PWD(X)$ for all metric Baire spaces X.
- Output B_α (QC (X)) = Baire (X) for all α > 1 and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

- WR ⊈ I if and only if B^I₁ (QC (X)) = PWD (X) for all metric Baire spaces X.
- WR ⊑ I if and only if B^I₁ (QC (X)) = Baire (X) for all metric Baire spaces X.
- B^I_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

- **Q** $B_1(QC(X)) = PWD(X)$ for all metric Baire spaces X.
- Output B_α (QC (X)) = Baire (X) for all α > 1 and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

- WR ⊈ I if and only if B^I₁ (QC (X)) = PWD (X) for all metric Baire spaces X.
- WR ⊑ I if and only if B^I₁ (QC (X)) = Baire (X) for all metric Baire spaces X.
- B^L_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

- $B_1^d(QC(X)) = PWD_0(X)$ for all metric Baire spaces X.
- Or B^d_α (QC (X)) = Baire (X) for all α > 1 and all metric Baire spaces X.

Theorem (P. Szuca and T. Natkaniec; A.K.)

- WR ⊈ I if and only if B₁^{I-d} (QC (X)) = PWD₀ (X) for all metric Baire spaces X.
- WR ⊑ I if and only if B₁^{I-d} (QC (X)) = Baire (X) for all metric Baire spaces X.
- B^{*I*-d}_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

\mathcal{J} contains an isomorphic copy of \mathcal{I} ($\mathcal{I} \sqsubseteq \mathcal{J}$) if there is a bijection $f: \bigcup \mathcal{I} \to \bigcup \mathcal{J}$ such that $f[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$.

 \mathcal{WR} is an ideal on $\omega \times \omega$ generated by two kinds of generators:

- **1** vertical lines, i.e., sets of the form $\{n\} \times \omega$ for $n \in \omega$;
- ② sets G ⊆ ω × ω such that for every (i, j), (k, l) ∈ G either i > k + l or k > i + j.

 \mathcal{J} contains an isomorphic copy of \mathcal{I} ($\mathcal{I} \sqsubseteq \mathcal{J}$) if there is a bijection $f : \bigcup \mathcal{I} \to \bigcup \mathcal{J}$ such that $f[A] \in \mathcal{J}$ for all $A \in \mathcal{I}$.

 \mathcal{WR} is an ideal on $\omega \times \omega$ generated by two kinds of generators:

- **(**) vertical lines, i.e., sets of the form $\{n\} \times \omega$ for $n \in \omega$;
- Sets G ⊆ ω × ω such that for every (i, j), (k, l) ∈ G either i > k + l or k > i + j.

Theorem (folklore)

- **4** $B_1^e(QC(X)) = PWD_0(X)$ for all metric Baire spaces X.
- B^e_α(QC(X)) = Baire(X) for all α > 1 and all metric Baire spaces X.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD_0(X)$ for all metric Baire X.
- **(2**, \mathcal{J}) is of the second q-type if and only if $B_1^{(\mathcal{I},\mathcal{J})-e}(QC(X)) = PWD(X)$ for all metric Baire X.
- ③ $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = Baire(X)$ for all metric Baire X.
- $B_{\alpha}^{(\mathcal{I},\mathcal{J})-e}(QC(X)) = Baire(X) \text{ for all } \alpha > 1 \text{ and all metric}$ Baire X.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD_0(X)$ for all metric Baire X.
- **2** $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD(X)$ for all metric Baire X.
- ③ $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = Baire(X)$ for all metric Baire X.
- $B_{\alpha}^{(\mathcal{I},\mathcal{J})-e}(QC(X)) = Baire(X) \text{ for all } \alpha > 1 \text{ and all metric}$ Baire X.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD_0(X)$ for all metric Baire X.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD(X)$ for all metric Baire X.
- $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = Baire(X)$ for all metric Baire X.
- B_α^{(I,J)-e} (QC (X)) = Baire (X) for all α > 1 and all metric Baire X.

・ 回 > ・ ヨ > ・ ヨ > ・

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD_0(X)$ for all metric Baire X.
- $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD(X)$ for all metric Baire X.
- $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = Baire(X)$ for all metric Baire X.
- $B_{\alpha}^{(\mathcal{I},\mathcal{J})-e}(QC(X)) = Baire(X) \text{ for all } \alpha > 1 \text{ and all metric}$ Baire X.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD_0(X)$ for all metric Baire X.
- $(\mathcal{I}, \mathcal{J})$ is of the second q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = PWD(X)$ for all metric Baire X.
- $(\mathcal{I}, \mathcal{J})$ is of the third q-type if and only if $B_1^{(\mathcal{I}, \mathcal{J})-e}(QC(X)) = Baire(X)$ for all metric Baire X.
- B_α^{(I,J)-e} (QC (X)) = Baire (X) for all α > 1 and all metric Baire X.

Let $A \in \mathcal{P}(\omega)$ and $(A_n)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A = \{ M \cup N : M \in \mathcal{I} \land N \subseteq A \};$
- $\mathcal{I} \sqcup (A_n)_{n \in \omega} = \{ M \cup N : M \in \mathcal{I} \land \exists_{n \in \omega} N \subseteq \bigcup_{i < n} A_i \}.$

Definition

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for any sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{WR} \sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for some sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.

◎ (I, J) is of the third q-type if $WR \sqsubseteq I \sqcup A$ for some $A \in J$.

- (Fin, $Fin \otimes \emptyset$) is of the first q-type.
- 2 $(\emptyset \otimes \operatorname{Fin}, \operatorname{Fin} \otimes \emptyset)$ is of the second q-type.
- $(\mathcal{WR}, \operatorname{Fin} \otimes \emptyset)$ is of the third q-type.

Let $A \in \mathcal{P}(\omega)$ and $(A_n)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A = \{ M \cup N : M \in \mathcal{I} \land N \subseteq A \};$
- $\mathcal{I} \sqcup (A_n)_{n \in \omega} = \{ M \cup N : M \in \mathcal{I} \land \exists_{n \in \omega} N \subseteq \bigcup_{i < n} A_i \}.$

Definition

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for any sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{WR} \sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for some sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.

③ $(\mathcal{I}, \mathcal{J})$ is of the third q-type if $WR \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

- (Fin, $Fin \otimes \emptyset$) is of the first q-type.
- $\textcircled{0} (\emptyset \otimes \mathrm{Fin}, \mathrm{Fin} \otimes \emptyset) \text{ is of the second q-type.}$
- $\ \ \, \textbf{(}\mathcal{WR},\mathrm{Fin}\otimes \emptyset\textbf{)} \text{ is of the third q-type.}$

Let $A \in \mathcal{P}(\omega)$ and $(A_n)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A = \{ M \cup N : M \in \mathcal{I} \land N \subseteq A \};$
- $\mathcal{I} \sqcup (A_n)_{n \in \omega} = \{ M \cup N : M \in \mathcal{I} \land \exists_{n \in \omega} N \subseteq \bigcup_{i < n} A_i \}.$

Definition

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for any sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{WR} \sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for some sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.

③ (I, J) is of the third q-type if $WR \sqsubseteq I \sqcup A$ for some A ∈ J.

- (Fin, $Fin \otimes \emptyset$) is of the first q-type.
- $\textcircled{0} (\emptyset \otimes \mathrm{Fin}, \mathrm{Fin} \otimes \emptyset) \text{ is of the second q-type.}$
- $\ \ \, \textbf{(}\mathcal{WR},\mathrm{Fin}\otimes \emptyset\textbf{)} \text{ is of the third q-type.}$

Let $A \in \mathcal{P}(\omega)$ and $(A_n)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A = \{ M \cup N : M \in \mathcal{I} \land N \subseteq A \};$
- $\mathcal{I} \sqcup (A_n)_{n \in \omega} = \{ M \cup N : M \in \mathcal{I} \land \exists_{n \in \omega} N \subseteq \bigcup_{i < n} A_i \}.$

Definition

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for any sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{WR} \sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for some sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.

③ (*I*, *J*) is of the third q-type if $WR \sqsubseteq I \sqcup A$ for some $A \in J$.

- (Fin, $Fin \otimes \emptyset$) is of the first q-type.
- $\textcircled{0} (\emptyset \otimes \mathrm{Fin}, \mathrm{Fin} \otimes \emptyset) \text{ is of the second q-type.}$
- $\ \ \, \textbf{(}\mathcal{WR},\mathrm{Fin}\otimes \emptyset\textbf{)} \text{ is of the third q-type.}$

Let $A \in \mathcal{P}(\omega)$ and $(A_n)_{n \in \omega} \subseteq \mathcal{P}(\omega)$. We denote:

- $\mathcal{I} \sqcup A = \{ M \cup N : M \in \mathcal{I} \land N \subseteq A \};$
- $\mathcal{I} \sqcup (A_n)_{n \in \omega} = \{ M \cup N : M \in \mathcal{I} \land \exists_{n \in \omega} N \subseteq \bigcup_{i < n} A_i \}.$

Definition

- $(\mathcal{I}, \mathcal{J})$ is of the first q-type if $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for any sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second q-type if $\mathcal{WR} \sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for some sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$, but $\mathcal{WR} \not\sqsubseteq \mathcal{I} \sqcup A$ for any $A \in \mathcal{J}$.

③ (*I*, *J*) is of the third q-type if $WR \sqsubseteq I \sqcup A$ for some $A \in J$.

- (Fin, $Fin \otimes \emptyset$) is of the first q-type.
- $\ \ \, {\it (} \emptyset \otimes {\rm Fin}, {\rm Fin} \otimes \emptyset {\it)} \ \, {\it is of the second q-type}.$
- $\textcircled{O} (\mathcal{WR}, \mathrm{Fin} \otimes \emptyset) \text{ is of the third q-type.}$

 Martin's Theorem on Borel determinacy: G₁ (I) is determined.

- $@ K.: Player I has a winning strategy if and only if <math>\mathcal{WR} \sqsubseteq \mathcal{I}$
- O Laflamme: Player II has a winning strategy if and only if *I* is ω-+-diagonalizable: there is a sequence (D_n)_{n∈ω} such that for each A ∈ *I* there is n with A ∩ D_n = Ø.

- Martin's Theorem on Borel determinacy: G₁(I) is determined.
- $@ K.: Player I has a winning strategy if and only if <math>\mathcal{WR} \sqsubseteq \mathcal{I}$
- O Laflamme: Player II has a winning strategy if and only if *I* is ω-+-diagonalizable: there is a sequence (D_n)_{n∈ω} such that for each A ∈ *I* there is n with A ∩ D_n = Ø.

- Martin's Theorem on Borel determinacy: G₁(I) is determined.
- $\textbf{@} \ \mathsf{K}.: \ \mathsf{Player} \ \mathsf{I} \ \mathsf{has} \ \mathsf{a} \ \mathsf{winning} \ \mathsf{strategy} \ \mathsf{if} \ \mathsf{and} \ \mathsf{only} \ \mathsf{if} \ \mathcal{WR} \sqsubseteq \mathcal{I}$
- O Laflamme: Player II has a winning strategy if and only if *I* is ω-+-diagonalizable: there is a sequence (D_n)_{n∈ω} such that for each A ∈ *I* there is n with A ∩ D_n = Ø.

- Martin's Theorem on Borel determinacy: G₁(I) is determined.
- ${\it @ K.: Player I has a winning strategy if and only if $\mathcal{WR}\sqsubseteq \mathcal{I}$}$
- Solution Content in the second s

Definition

- $(\mathcal{I}, \mathcal{J})$ is of the first *c*-type if $Fin \otimes Fin \not\sqsubseteq \mathcal{I} \sqcup (A_n)_{n \in \omega}$ for any sequence $(A_n)_{n \in \omega} \subseteq \mathcal{J}$.
- (I, J) is of the second c-type if Fin ⊗ Fin ⊑ I ⊔ (A_n)_{n∈ω} for some sequence (A_n)_{n∈ω} ⊆ J, but Fin ⊗ Fin ⊈ I ⊔ A for any A ∈ J.
- $(\mathcal{I}, \mathcal{J})$ is of the third *c*-type if $Fin \otimes Fin \sqsubseteq \mathcal{I} \sqcup A$ for some $A \in \mathcal{J}$.

- Martin's Theorem on Borel determinacy: the game is determined.
- ② Laflamme: Player I has a winning strategy if and only if Fin \otimes Fin ⊑ I
- Laflamme: Player II has a winning strategy if and only if *I* is ω-diagonalizable by *I*-universal sets (which is a "nice" combinatorial property).

- Martin's Theorem on Borel determinacy: the game is determined.
- ② Laflamme: Player I has a winning strategy if and only if Fin ⊗ Fin ⊑ *I*
- Laflamme: Player II has a winning strategy if and only if *I* is ω-diagonalizable by *I*-universal sets (which is a "nice" combinatorial property).

- Martin's Theorem on Borel determinacy: the game is determined.
- ② Laflamme: Player I has a winning strategy if and only if Fin ⊗ Fin ⊑ *I*
- Laflamme: Player II has a winning strategy if and only if *I* is ω-diagonalizable by *I*-universal sets (which is a "nice" combinatorial property).

- Martin's Theorem on Borel determinacy: the game is determined.
- ② Laflamme: Player I has a winning strategy if and only if Fin ⊗ Fin ⊑ I
- Laflamme: Player II has a winning strategy if and only if *I* is ω-diagonalizable by *I*-universal sets (which is a "nice" combinatorial property).

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- **③** $(\mathcal{I}, \mathcal{J})$ is of the first *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n(X)$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.
- **③** $(\mathcal{I}, \mathcal{J})$ is of the third *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces X.
- ② $(\mathcal{I}, \mathcal{J})$ is of the second *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n(X)$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.
- **③** $(\mathcal{I}, \mathcal{J})$ is of the third *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces X.
- **②** $(\mathcal{I}, \mathcal{J})$ is of the second *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n(X)$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.

③ $(\mathcal{I}, \mathcal{J})$ is of the third *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces X.
- **②** $(\mathcal{I}, \mathcal{J})$ is of the second *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n(X)$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.
- $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces X.

Let \mathcal{I} and \mathcal{J} be non-orthogonal ideals on ω . Suppose that \mathcal{I} is Borel.

- $(\mathcal{I}, \mathcal{J})$ is of the first c-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces X.
- **②** $(\mathcal{I}, \mathcal{J})$ is of the second *c*-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) = B_n(X)$ for all $1 \le n < \omega$ and all perfectly normal spaces *X*.
- $(\mathcal{I}, \mathcal{J})$ is of the third c-type if and only if $B_n^{(\mathcal{I}, \mathcal{J})-e}(C(X)) \supseteq B_{n+1}^e(C(X))$ for all $1 \le n < \omega$ and all perfectly normal spaces X.

Problem

Generalize the previous Theorem to all $1 \leq \alpha < \omega_1$.

Problem

Characterize $B_1^{(\mathcal{I},\mathcal{J})-e}(C(X))$ for $(\mathcal{I},\mathcal{J})$ of the third c-type.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Problem

Generalize the previous Theorem to all $1 \leq \alpha < \omega_1$.

Problem

Characterize $B_1^{(\mathcal{I},\mathcal{J})-e}(C(X))$ for $(\mathcal{I},\mathcal{J})$ of the third c-type.

▲□ → ▲ 目 → ▲ 目 →

Thank you for your attention!